
 

 

 

 

 

 

How the Task-Set Influences Implicit and Explicit Learning 

 

 

Sarah Esser & Hilde Haider 

University of Cologne 

 

 

 

 

 

Corresponding Author 

Dr. Sarah Esser 

Department of Psychology 

University of Cologne 

Sarah.esser@uni-koeln.de 

 

Running Head: How the Task-Set Influences Implicit and Explicit Learning 

 

Keywords: Implicit Learning, Implicit / Explicit Knowledge Representations, Conscious 

Awareness, Action Control, Theory of Event Coding, Associative Strength, Global 

Workspace Theory, Higher Order Thought Theories, Unexpected Event Hypothesis 



How the Task-Set Influences Implicit and Explicit Learning 

- 1-  

Abstract 

This article aims to provide a conceptual framework for implicit sequence learning that 

addresses two issues, both of which are important for understanding how implicit learning 

can guide our everyday behavior in coherence with our current task-sets and goals. 

The first part of this article is concerned with the implicit sequence learning 

mechanism itself. Here, we try to develop a theoretical view on implicit learning by refining 

the critical concept of the “dimensions” implicit sequence representations refer to. By 

integrating the basic assumptions about uni- and multidimensional implicit learning with 

current theories on action control, we target current topics in implicit sequence learning 

research. This includes the question how implicit sequence knowledge is represented, 

whether it is helpful to differentiate between motor and perceptual implicit learning, the 

degree to which implicit knowledge can be said to be acquired and used in an automatic 

fashion and which role task-sets have in implicit learning. 

In the second part, we ask for the mechanisms underlying the transition from implicit 

to explicit knowledge. Here, we review hitherto existing theoretical views and evaluate their 

compatibility with current scientific concepts of consciousness (the Global Workspace Theory 

and Higher Order Thought Theories). In this context, we introduce the Unexpected Event 

Hypothesis (Frensch et al., 2003) in an elaborated form and discuss its advantage in 

explaining the emergence of conscious knowledge in an implicit learning situation. 
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One important characteristic of many of our daily actions is their sequential character. 

Organisms adapt to sequential structures or statistical regularities inherent in the 

environment and use the acquired knowledge to predict future events (e.g., Clark, 2013; 

Rescorla & Wagner, 1972). Interestingly, most of this knowledge develops by repeatedly 

performing an action sequence or perceiving perceptual contingencies without any intention 

to learn them. Usually, neither this ongoing learning process nor the knowledge resulting 

from it is consciously aware. For example, we can walk our way from our office to the 

cafeteria while checking our phone, not really watching our steps or our surroundings that tell 

us when to turn left, take a stair or open a door. We also can detect a wrong note in a song 

we know well, even when we lack musical education. How do we learn about these 

regularities, how are they represented, which kind of information is extracted from the 

environment, how complex, abstract, transferable or flexible is this knowledge? These are all 

concerns of the research in the field of implicit sequence learning.  

Since implicit (sequence) knowledge is usually treated as unconscious knowledge, it 

might easily be associated with the typical characteristics ascribed to unconscious (or 

automatic) processes, mainly going back to the work of Schneider and Shiffrin (1977; Shiffrin 

& Schneider, 1977). This inspired the investigation of the independence of implicit learning 

from attentional resources, its lack of controllability and inflexibility. Additionally, much effort 

has been made to rigorously examine and debate whether it is justified to classify implicitly 

acquired knowledge as unconscious (Newell & Shanks, 2014; Overgaard, 2017; Peters & 

Lau, 2015; Shanks & St John, 1994). Thereby implicit learning has often been contrasted 

against explicit learning and knowledge (Dienes & Berry, 1997; Jiménez, Vaquero, & 

Lupiañez, 2006).  

This approach of investigating implicit learning surely has been very productive and 

appropriate to establish a core understanding of the underlying probably unconscious 

learning processes. However, in the last ten years, an interest in the interaction between 

conscious and unconscious processes has increased in various research paradigms 
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concerned with unconscious processing (Kiefer, 2012; Kiefer, Adams, & Zovko, 2012; van 

Gaal, de Lange; & Cohen, 2012; van Gaal et al., 2014;). For implicit learning research, this 

shift in interests predominantly led to a stronger focus on the role of selective attention and 

task-sets (Abrahamse et al., 2010; Jiménez & Méndez, 1999).  

Task-sets are commonly defined as the configuration of cognitive processes that 

enable us to bind the appropriate responses to the selected characteristics of stimuli in order 

to achieve a set goal (see Sakai, 2008, for a review). This includes, for example, the guiding 

of attention (Longman, Lavric, & Monsell, 2016), allocation of short-term memory resources 

(Sheremata & Shomstein, 2017), the inhibition of irrelevant aspects of a stimulus (Dreisbach 

& Haider, 2009), goal maintenance and resolution of conflict (Kane & Engle, 2003). Simply 

put, a task-set determines what aspects of our actions and the environment we represent, 

and consequently, also what we consciously perceive while pursuing a certain goal.  

It is an old idea in psychology, leading back to Ebbinghaus (1885), that the 

representations we briefly hold in our consciousness will become associated, even though 

the process of association and the resulting knowledge of sequential information might not 

be conscious in itself. Yet, the role of the conscious representation of a task has played a 

very minor role in implicit learning research for a long time and has only recently been 

acknowledged as an important factor in explaining which sequential information will be 

learned implicitly and which won’t (Abrahamse et al., 2010). Even though gradually more 

evidence for the role of task-sets in implicit learning is accumulating, there is no up-to-date 

model that combines older and current results. One of the most influential and 

comprehensive models of implicit learning came from Keele et al. (2003). This model still 

contains valuable concepts. Nevertheless, it is not specific enough in some points in order to 

explain the interaction of conscious and unconscious processes involved in implicit learning.  

In this article, we will incorporate some of the core assumptions of the Dual System 

Model from Keele et al. (2003) and extend them by including concepts from current theories 

of action control, most importantly the Theory of Event Coding (Hommel, Müsseler, 
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Aschersleben, & Prinz, 2001; Hommel, 2004, 2009, 2015; Shin, Proctor, & Capaldi, 2010), in 

order to account for the role of task-sets, respectively conscious task-representations. While 

the first part of this article will be concerned with the question of how conscious, or 

consciously available, information influences the implicitly learned representations, the 

second part of this article covers the opposite question: How can implicit knowledge become 

a conscious, explicit representation?  

In the Dual System Account, this latter question is discussed only marginally and 

lacks reference to overarching conceptualizations of unconscious and conscious processing. 

Yet, the mechanisms how implicit knowledge can become explicit knowledge have received 

less attention even though many empirical findings show that implicit knowledge often but not 

always transforms into explicit knowledge at some point. The conditions under which explicit 

knowledge arises should be captured by a model of implicit learning. Moreover, this question 

is of theoretical and practical importance. On the theoretical side, when which unconscious 

representation will be selected to be represented consciously, how this selection is realized 

and which functions separate unconscious from conscious representations are some of the 

most controversial and enigmatic topics in psychology. These mechanisms of consciousness 

are difficult to access and often approached by priming studies (e.g. Kouider & Faivre, 2017; 

Kouider, de Gardelle, Sackur, & Dupoux, 2010; Lau & Rosenthal, 2011 Overgaard, 2003). 

Priming studies provide an ideal opportunity to study the differences between conscious and 

unconscious processing on a trial-by-trial basis and help to fathom the role of attention, 

signal strength, and beliefs. Implicit learning paradigms can be a valuable extension to these 

commonly used paradigms; they provide access to the question how the cognitive system 

can learn about its own internal states. So far, there is not much research on how the system 

changes from a state of not knowing that it knows something to knowing that it knows 

something. In the second part of this article, we aim to summarize the existing literature on 

this problem. We will evaluate the advantages and disadvantages of the proposed theoretical 

accounts and discuss the open questions. We will include these into our framework of implicit 

learning.  
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To address these questions, our article contains two main sections. In the first, we 

focus on implicit learning. Here, we start with a brief overview of the history of implicit 

learning research in order to understand the progressions made in the conceptualization of 

implicit learning mechanisms and current research interests. We then review the different 

theoretical views on what contents can be learned in an implicit learning situation and how 

these contents are represented. Lastly, we will discuss the question how attentional 

respectively task set mechanisms are related to implicit learning. In the second part, we will 

then turn to the question of how implicitly acquired knowledge can become a conscious 

representation. 

 

Conceptualization of Implicit Learning 

The following section will mainly incorporate research from the Serial Reaction Time 

Task (SRTT; Nissen & Bullemer, 1987), because this paradigm constitutes a very simple and 

versatile way to examine implicit learning processes and, in conjunction with that, also 

provides a large amount of studies.  

In the most basic form of the SRTT, participants see marked locations on the screen 

which are mapped to spatially corresponding keys on the keyboard. On each trial, a location 

lights up and the participant’s task is to respond with the corresponding key. Unbeknownst to 

participants, the stimuli on the screen, and thereby also the required motor commands, follow 

a systematic sequence. Typically, participants show a substantial learning effect in their 

performance data (latencies and errors). At the same time, participants usually are not able 

to express their sequence knowledge in a subsequent direct test when asked to either 

express their knowledge verbally (Rünger & Frensch, 2010) or to use it strategically 

(Destrebecqz & Cleeremans, 2001). This dissociation between task performance and 

verbally expressible knowledge is typically interpreted as implicit knowledge without 

concurrent explicit knowledge.  
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This simple version of the SRTT has been extended to designs allowing to test rather 

flexibly pure perceptual sequence learning or pure motor learning (e.g., Eberhardt, Esser & 

Haider, 2017; Gaschler, Wenke, Frensch & Cohen, 2011; Goschke & Bolte, 2013; Haider et 

al., 2011; 2012, 2014) on the one hand. On the other hand, it also allows to implement 

different sorts of sequences, such as deterministic or probabilistic sequences (e.g., Jiménez 

& Méndez, 1999). This extension of the SRTT makes it possible to answer also most of the 

research questions put forward in the field of statistical learning (Goujon, Didierjean & 

Thorpe, 2015; Perruchet & Pacton, 2006).    

A Brief Overview of the History of Implicit Learning: Abstract Rule Knowledge versus 

Single Associative Transitions 

Concerning the content of implicit learning, one question researchers are interested in 

is its representational format. Two conceptually different views can be distinguished here: 

One assumes that abstract rule knowledge is acquired. The other one proposes a simpler, 

associative learning mechanism. The account of abstract rule learning is mainly based on 

research within the AGL paradigm. Historically, this view is the oldest as it leads back to the 

studies of Reber (1967) and builds on findings which show that a new but structurally equal 

sequence in a transfer task also profits from the sequence learned during training (e.g. 

Francis, Schmidt, Carr, & Clegg, 2009; Reber, 1989). However, it has been debated whether 

such transfer effects, seemingly based on abstract rule knowledge rather lead back to at 

least partially explicit sequence knowledge (Gomez, 1997) or whether some form of 

statistical learning which is sensitive to perceptional features, respectively to repetitions, is 

responsible for such results (Conway & Christiansen, 2006; Gomez, Gerken, & 

Schvaneveldt, 2000). Even though more recent findings, which involve refined 

methodological designs, suggest that it is possible to acquire implicit abstract rule knowledge 

(Ling, Li, Qiao, Guo, & Dienes, 2016; Jiang, Zhu, Guo, Ma, Yang, & Dienes, 2012), the 

debate of implicit learning of abstract rules is not settled. . A more common assumption is 

that implicit learning involves the learning of single associative transitions, mainly governed 
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by transition probabilities (e.g. Howard, Howard, Dennis, & Kelly, 2008; Remillard & Clark, 

2001). This view became increasingly popular in the 1990s and has a somewhat stronger 

connection to the then upcoming SRTT paradigm, with which it has been demonstrated that 

implicit learning data can be modeled with simple recurrent network architectures 

(Christiansen, Allen, & Seidenberg, 1998; Cleeremans & McClelland, 1991). The view that 

implicit learning rather relies on knowledge about transitional probabilities than on extracting 

abstract rules from the training material can be extended by the assumption that this type of 

learning gradually leads to the development of information chunks (see Perruchet & Pacton, 

2006, for a discussion). 

What is learned in implicit learning? 

Assuming that the learning of associations between single elements constituting a 

sequence plays a significant role in implicit learning leads to another question: What is the 

informational content of these associations? Looking at the traditional SRTT, as it has been 

introduced by Nissen and Bullemer (1978), participants are confronted with at least two 

concurrent sequences. The stimuli on the screen and the finger movements, respectively the 

to-be-pressed buttons follow the same sequence. This leads to at least four possibilities 

which associations are acquired in such a situation. First, implicit learning might be a motor 

process, leading to R-R associations. Second, perceptual knowledge about the succession 

of the stimuli in the form of S-S associations might be acquired. Lastly, stimulus and 

response information might become integrated in either the form of S-R or R-S associations 

(Abrahamse et al., 2010; Ziessler & Nattkemper, 2001). 

Implicit R-R learning might be the most self-evident assumption about the content of 

implicitly learned representations. Examples for sequential activities within the motor domain, 

like typing on a keyboard or playing an instrument, most easily come to one’s mind, while at 

the same time, motor knowledge has the rather salient characteristic of not being easily 

accessible to verbalization (Wise & Willingham, 2009). Drawing on the work about non-
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implicit motor sequence learning (e.g. Keele & Summers, 1976; Willingham, 1998), implicit 

R-R learning was among the first proposed mechanisms.  

Despite this main focus on implicit motor learning, there have been attempts to show 

perceptual learning as early as in the 1990s. Howard, Mutter and Howard (1992) 

demonstrated learning of a stimulus sequence that was merely observed, i.e. no concurrent 

sequential responses were made. Mayr (1996) found learning of a stimulus sequence that 

was uncorrelated to the response sequence. For the following closer inspection of implicit 

learning, it is noteworthy that implicit perceptual learning can be differentiated in two different 

kinds: Visual implicit learning (Haider, Eberhardt, Kunde, & Rose, 2012; Haider, Eberhardt, 

Esser, & Rose, 2014; Turk-Browne, Scholl, Chun, & Johnson, 2009) and visuo-spatial implicit 

learning (Howard et al., 1992; Mayr, 1996; Remillard, 2009). While visual implicit learning 

can mean the learning of a color- or a shape-sequence, visuo-spatial implicit learning refers 

to the learning of stimulus locations. Since the identity of a stimulus comprises its color and 

other visual characteristics as well as its location, these two learning types both fall under the 

category of S-S learning. Apart from implicit learning in the visual domain, perceptual implicit 

learning has also been investigated in the auditive (Dienes & Longuet-Higgins, 2004; 

Weiermann & Meier, 2012) and haptic (Abrahamse, van der Lubbe, & Verwey, 2008; Kim, 

Johnson, Gillespie, & Seidler, 2014) domain, but to a much lesser extent.  

The suggestion of an S-R learning mechanism within implicit learning goes back to 

the work of Willingham, Nissen, and Bullemer (1989). They found that participants who were 

trained with a motor sequence in which the keys were mapped to colors appearing at random 

locations did not show any transfer of this motor knowledge when the colors where removed 

and responses instead were cued by stimulus position. It was concluded that implicit learning 

is neither a purely perceptual nor a purely motor process and that “condition-action 

statements” (Wilingham et al., 1998, p. 1058) are acquired (for a current view of S-R 

learning, see Schwarb & Schumacher, 2010).  
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The last implicit learning mechanism, we would briefly like to introduce here is R-S 

learning which is often equalized with response-effect (R-E) learning. In several experiments, 

it has been shown that maintaining a certain response sequence while manipulating the 

contingency of the stimuli affects implicit learning (e.g. Ziessler, 1998; Ziessler & Nattkemper, 

2001). Moreover, it has been shown that task-irrelevant additional effect stimuli (i.e. effect-

tones) enhance implicit learning processes (Hoffmann, Sebald, & Stöcker, 2001; Stöcker, 

Sebald, & Hoffmann, 2003). Based on recent findings, it remains debatable whether R-S and 

R-E learning should be treated synonymously. R-E learning, outside of the implicit learning 

field, is strongly linked to intentional action control (ideomotor principle, Hommel et al., 2001) 

and it has been suggested that the acquisition of R-E associations depends on the 

interpretation of the stimuli being caused by one’s own actions (Herwig & Waszak, 2009, 

2012; but see Gaschler & Nattkemper, 2012, for a different interpretation).  

To summarize, even within an associative account, there are many different 

proposals for implicit learning mechanisms. In earlier works, studies often aimed to isolate 

one single mechanism which is responsible for implicit learning. This led to seemingly 

contradictory findings. What was needed was a more flexible framework that allowed 

learning of a multitude of different sequences, including perceptual and motor learning. An 

important step in this direction was made by Keele et al. (2003) with their Dual-System 

Model.  

Keele et al.’s Dual System Account 

The Dual-System Approach of Keele et al. (2003) is based on viewing implicit learning 

as a multidimensional process. Consequently, in their model, there is not one central learning 

mechanism, like R-R or S-S learning, which is the only or most important one in sequence 

learning. Rather, different implicit learning processes can occur in parallel. The authors 

assume that implicit learning is realized by two independent systems. One is the 

unidimensional system which acquires knowledge unconsciously and independent of 
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attentional resources. The other system is multidimensional; it is said to build up knowledge 

which is accessible to consciousness and relies on attentional resources.  

The unidimensional system consists of multiple encapsulated modules which operate 

in parallel. Each of these modules is specialized for information along a single dimension 

(e.g. response locations, colors of the stimuli, etc.). The modules of the unidimensional 

system work independently from each other. They process the information they are 

specialized for and build up associations between all available predictable events along this 

dimension. This input specificity grants independence of attention and enables the parallel 

learning of multiple sequences even if they are not correlated.  

The multidimensional system works differently. This system is able to integrate 

information between different modules and to build up associations across these dimensions. 

This enables the system to build up knowledge about sequences that consist of more than 

one dimension and that are only informative when both dimensions are considered (for 

example when the location of a stimulus predicts its next color). In order to protect this 

system from overload, attention functions as a filter mechanism. Only attended information is 

granted access into this system. The Dual-System Model has been a great contribution to 

understanding implicit learning as a multimodal, flexible process. The introduction of learning 

modules which work along specific dimensions has been especially helpful in understanding 

lots of former, seemingly contradictory, empirical findings.  

However, since the model was first introduced further research points to two 

important issues in which regard the model could be improved. The first point already has 

been shortly addressed by Keele et al. (2003) themselves: The term dimension could profit 

from further specification which kind of information can be processed within one dimension. 

The second point concerns the postulated role of attentional mechanisms for implicit 

learning. More recent research has shown that the question whether implicit learning is 

dependent on attention, needs some finer specification which attentional mechanisms are or 

are not involved in implicit learning (Jiang & Chun, 2001; Jiménez & Mendèz, 1999; Musz, 
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Weber, & Thompson-Shill, 2015). In the following section, we will provide a theoretical 

outlook that consolidates both issues by refining the definition of what a “dimension” is and 

how implicit learning depends on selective attention, respectively on a person’s task set. 

Defining the term “Dimension”. 

Keele et al. (2003) stated that the term dimension can be used interchangeably with 

modality, even though they also acknowledge that some modalities might also consist of 

more than one dimension. The general idea is that dimensions, viewed as modalities, refer to 

a defined, fixed network in the brain. For example, learning a color sequence might involve 

the V4 and the left fusiform gyrus (Bartels & Zeki, 2000; Simmons, Ramjee, Beauchamp, 

McRae, Martin, & Barsalou, 2007), while motor learning involves cortico-striatal-cerebellar 

pathways (Rose, Haider, Weiller, & Büchel, 2002; Tzvi, Münte, & Krämer, 2014). It remains 

somewhat unclear whether Keele et al. (2003) distinguish between different dimensions 

within the motor system like, for instance, a hand- vs. a foot dimension. Thus, dimension 

remains a rather abstract term. Few other efforts have been made since then to further 

define the term dimension within implicit sequence learning. Abrahamse et al. (2010) suggest 

that a dimension should be “regarded as equivalent to a specific type of feature, either at the 

stimulus level (e.g., shape) or at the response level (e.g., response location)” (p. 614). This 

distinction between stimulus level and response level corresponds well to the very common 

procedure of separating perceptual implicit learning (S-S) from motor implicit learning (R-R) 

as this distinction roots in the same conception of having learning mechanisms which are 

divided between the processing of stimuli and responses. 

Slightly different, Goschke and Bolte (2012) assume that dimensions are based on 

separable attributes which are not specific to stimuli or responses. As an example for the 

blurred line between stimulus and response level, they state that the encoding of a stimulus 

location also activates a spatially compatible response code. The problem of implicit location 

learning makes it clear that a more specific definition of what constitutes a dimension in 

implicit learning is needed.  
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Based on the idea of loosening the distinction between a stimulus and a response 

level, Eberhardt, Esser, and Haider (2017) and Haider, Esser, and Eberhardt (2018) recently 

proposed to understand the term dimension as feature codes, irrespective of whether these 

belong to the stimulus or to the response. The concept of feature codes is derived from 

research in the field of action control, in particular from the Theory of Event Coding (TEC; 

Hommel et al., 2001; Hommel, 2015)  

Hommel and colleagues (2001) postulate that action and perception are represented 

in the same format. A central assumption of the TEC is that actions and perceptions are both 

represented by their distal events in the form of consciously available feature codes. Feature 

codes consist of various proximal sensory and motor representations which have been 

associated and integrated over a person’s learning history and therefore are distributed over 

the whole brain. Elsner and Hommel (2001) suggested a two-phased learning mechanism 

behind the development of a feature code. Whenever one interacts with the environment, 

one’s own actions necessarily lead to various consciously accessible, distal sensory effects, 

represented in multiple corresponding proximal, unconscious modules. For example, moving 

left is associated with a multitude of visual, auditive and proprioceptive effects, of which each 

single effect is represented in distributed modules over the entire brain. Over the course of 

repeated actions, the motor commands that produced these effects and their proximal 

sensory representations will be bound together, constituting the feature code “left”. As a 

result, such a feature code is the bi-directional, multimodal association between actions and 

their sensory effects. This bi-directionality is supported by the finding that endogenously 

anticipating or exogenously perceiving one single sensory element of the feature code 

results in the activation of the whole feature code, including an activation of the 

corresponding motor commands (Kunde, Hoffmann, & Zellmann, 2002). Conversely, 

executing the corresponding action leads to an activation of all associated sensory effects, 

making their detection much easier (Craighero, Fadiga, Rizzolatti, & Umilita, 1999; 

Wykowska, Schubö, & Hommel, 2009). This justifies the assumption of the TEC that within a 
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feature code, no qualitative difference is made between the involved sensory or motor 

modules. 

What do these assumptions of the TEC mean for the implicit learning research and 

the understanding of what a dimension is? Our proposal is that in implicit learning, a 

dimension is defined as the processing of an abstract feature code which is an integrated 

structure of different modalities, including motor and perceptual features of an action. This 

means that the representation of a task, respectively the task-set, has a significant role for 

the question what associations will be built implicitly. The same sequence usually can be 

defined by various different feature codes. For example, when one learns to play the piano, 

one might first code one’s actions by the location of the keys. With progress in training, the 

keys become associated with the tones they produce and actions can then be coded by their 

effect-tones. The idea that environmental events can intentionally be coded by various 

different features is called intentional weighting in the TEC (Hommel et al., 2001; Memelink & 

Hommel, 2013). A piano novice will code the same sequence (piece of music) as a sequence 

of response-key locations, while the advanced player will represent a sequence of tones. 

Implicit learning by feature codes means that all the different modules that correspond to a 

certain feature code (or dimension), whether they process motor or perceptual information, 

will acquire implicit knowledge. Whenever this code is activated, the different corresponding 

modules will contribute to task performance. We will make this point clearer by giving two 

examples of implicit learning where the relevant dimension, or feature code, is “location“, 

respectively where it is “color”.  

While learning of response locations is a widely accepted finding, it is, up to now, 

controversially discussed whether there is such a thing as pure perceptual location learning. 

Even when motor commands are controlled, it is difficult to exclude the involvement of eye-

movements (Higuchi & Saiki, 2017; Mayr, 1996). Pure perceptual location learning should be 

defined as learning of attentional shifts without the involvement of any motor programming 

(Coomans, Deroost, Vendenbossche, Van den Bussche, & Soetens, 2012; Marcus, 
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Karatekin, Markiewicz, 2006; Remillard, 2009). This seems to contradict the assumption of a 

very strong connection between visual location processing and motor programming as the 

perceived location of an object is usually used to guide the respective motor command (e.g., 

Goodale & Milner, 1992). Nevertheless, the processing of motor locations can be 

independent of the visual location information (Eisenberg, Shmuelof, Vaadia, & Zohary, 

2011; Hardwick, Rottschy, Miall, & Eickhoff, 2013). Vice versa, also visual location 

processing can be independent of motor programming (Colby & Goldberg, 1999; Kesner & 

Rogers, 2004; Zimmer, 2008). If dimension is equalized with modality, as suggested be the 

model Keele at al. (2003), pure perceptual location learning and pure motor location learning 

should be possible and accordingly, two parallel, uncorrelated perceptual- and motor-location 

sequences should be learnable.  

Viewing dimensions as abstract feature codes leads to different predictions. 

Perceiving a stimulus on the, for example, left position on a screen activates different 

modules which, over a person’s learning history, have been integrated into the abstract 

feature code “left”. This includes visual as well as motor-related information and, therefore, 

having two uncorrelated, concurrent perceptual- and motor “location” sequences should lead 

to interference and a lack of implicit learning. Thus, the prediction whether or not a person 

can concurrently learn two uncorrelated location sequences depends on the definition of the 

term dimension. 

Another example for different hypotheses arising from the modality-based and the 

feature-code based accounts of dimensionality could be learning of a color-sequence. So far 

color-sequence learning is clearly regarded as perceptual learning in the implicit learning 

literature. However, within the TEC account, it has been shown that actions can be coded by 

the various effects they produce in the environment (Elsner & Hommel, 2001). It follows that 

a motor response sequence might very well be coded not only by response locations but also 

by other perceptual features, for instance, by color. It has been shown that neurons in the 

primary motor cortex quickly develop a sensitivity toward sensory features (e.g. color) when 
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these features become relevant to the response (Zach, Inbar, Grinvald, Bergmann, & Vaadia, 

2008). Therefore, implicit learning of a (perceptual) color sequence could be perturbed by a 

concurrent motor sequence and vice versa, if the participant is brought to code their 

responses by colors as well (Gaschler, Frensch, Cohen & Wenke, 2012; Wenke & Frensch, 

2005).  

The last example not only makes it clear that implicit learning based on feature codes 

blurs the line between perceptual and motor learning, but moreover suggests that implicit 

learning can be a flexible process, depending on the currently given task-set. This reliance 

on task-sets goes against the common assumption – also proposed in the model of Keele et 

al. (2003) – that implicit learning is a fully automatic and attention-independent process in 

which knowledge is acquired about unidimensional sequences whenever a person interacts 

with their environment. In the following section, we will discuss in which way implicit learning 

of feature codes seems to depend on task-sets and how far it can be said to be independent 

of attentional processes.  

Implicit Learning of Feature Codes and its Relation to Attention  

Leading back to the fundamental work by Nissen and Bullemer (1987), implicit 

learning has often been investigated under dual-task conditions. It has been extensively 

debated whether the implementation of a second, concurrent task reduces the amount of 

attentional resources which can be allocated to the implicit learning task and thereby 

interferes with implicit learning processes (Cohen, Ivry, & Keele, 1990; Frensch, Lin, & 

Buchner, 1998). The general conclusion of these studies was that implicit learning is 

independent of attentional resources (Frensch, Wenke & Rünger, 1999).  

In an important study, Jiménez and Méndez (1999) later suggested that even though 

attention defined as the amount of mental effort dedicated to a task does not affect implicit 

learning, the selective function of attention might nevertheless play an important role. The 

sequential relation between a stimulus shape and a stimulus position was only learned if the 

stimulus shape was instructed to be attended to by a secondary task. Keele et al. (2003) 
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integrated the research on attentional demands for implicit learning under dual-task 

conditions and concluded that as long as implicit learning is unidimensional, even the 

selective function of attention is unnecessary, because no integration or exchange of 

information needs to be coordinated and the single modules can work in parallel. On the 

contrary, the selective function of attention is said to be needed for multidimensional learning 

to occur because a task-set is needed to specify which elements in the environment correlate 

with each other. Otherwise, in a real-life setting, multidimensional learning would hardly be 

possible due to the multitude of uncorrelated information disrupting meaningful correlated 

information.  

Slightly different, within our proposal in which implicit learning depends on feature-

codes, we assume that task-sets play an important role even for unidimensional learning. We 

agree on the assumption of Keele et al. (2003) that a multitude of unidimensional sequences 

can implicitly be learned in parallel without any attentional supervision. However, according 

to our proposal, the important constraint is that they need to rely on non-overlapping feature 

codes.  

In an implicit learning task, a sequence could, for example, consist of a succession of 

colors and response-locations. Decorrelating these two dimensions can lead to parallel 

learning of both sequences (Haider et al., 2012), without the need for selective attention to 

the two features because there is no dimensional overlap and both sequences can only be 

coded by the respective feature that defines them. However, once a sequence can be 

described by more than one feature, it might become important which feature a person codes 

as being response relevant. Moreover, if two uncorrelated sequences overlap in the feature 

codes that describe them (e.g. stimulus location and response location), it would be 

necessary to code one of the sequences by a different feature code. For instance, one 

sequence would need to be coded by color and not by location, in order to maintain parallel 

learning of both sequences. That is, we assume that intentional weighting is important as it 

enables participants to separate abstract feature codes of otherwise overlapping sequences. 
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In the following section we will provide empirical evidence for the assumptions, that (1) 

implicit learning relies on abstract feature codes and that (2) the task-set determines by 

which features a sequence is coded.  

Empirical evidence: 

So far, not many studies have explicitly investigated the role of the task-set on implicit 

learning. One of the first studies to address this issue and to connect the ideas of the TEC 

and implicit learning came from Gaschler et al. (2012). In their experiment, two groups of 

participants performed an SRT with the same sequence. The sequence consisted of four 

colorless symbols. Each symbol was assigned to a corresponding key on a computer 

keyboard. In addition, these four keys were labeled with four differently colored stickers. The 

only, but important, difference between the two conditions was the instructions the 

participants received. Prior to the SRT training, one group was asked to memorize the 

mapping of shapes to key positions (diamond = outer left key, circle = outer right key, etc.; 

spatial condition) while the other group was asked to learn the mapping of shapes to key 

colors (diamond = red key, circle = yellow key, etc.; color condition). Due to the fixed color 

labels on the four keys, the sequence consisted of two correlated dimensions: A response-

location and a color sequence. This was true for both conditions, regardless of which feature 

was emphasized in the instructions. After a training phase the keyboard was exchanged. On 

the new keyboard, the four colors of the training phase were arranged differently. For the test 

phase, all participants were given the instruction to respond to the shape stimuli with their 

respective colors (diamond = red key, etc.; Experiment 2b). This instruction left the previously 

presented color sequence intact while at the same time eliminating the previous response 

location sequence. Gaschler et al. (2012) found that only those participants which had been 

instructed to respond to the shapes with the colored keys before training (color instruction 

group) showed a preserved learning effect in the test phase. The group for which the keys 

had been labeled by their spatial positions before training did not show any color sequence 

knowledge. Thus, Gaschler et al. (2012) were able to show that the instructed task-set, 
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respectively the coding of the sequence, plays a significant role in the question which 

information about a sequence is implicitly learned. Note that this result would not have been 

predicted by any theoretical account claiming that unidimensional learning is independent of 

selective attention or independent of the instructed task-set (e.g. Keele et al., 2003).  

In a series of two studies (Eberhardt et al., 2017; Haider et al., 2018), we investigated 

the assumption that intentional weighting is necessary to resolve the conflict between two 

sequences that share an overlapping feature code. As mentioned earlier, learning of a 

parallel stimulus- and response-location sequence should not be possible because coding 

either the stimuli or the responses by “location” should activate sensory as well as motor 

modules. There are two studies which showed parallel learning of a stimulus- and an 

uncorrelated response-sequence (Mayr, 1996; Deroost & Soetens, 2006), which would refute 

our assumption and rather fit a narrower definition of dimensions as local modules. However, 

both studies had a design that allowed the response-sequence to be coded by object-identity 

instead of response-location. Our studies directly tested this alternative explanation.  

In both studies (Eberhardt et al., 2017; Haider et al., 2018), there was a response-

location sequence and an uncorrelated stimulus-location sequence. In order to achieve this 

decorrelation, participants received a colored target stimulus in the upper part of the screen 

that occurred at a certain location (one out of seven locations). In the lower part of the 

screen, six colored response squares were presented horizontally. These were spatially 

mapped to certain response keys. On each trial, participants were instructed to find the 

response square containing the target color and to press the mapped response key. The 

arrangement of the color of the response squares changed from trial to trial so that there was 

no fixed color-response mapping. 

In the first series of experiments (Eberhardt et al., 2017), the participants always 

received a spatial stimulus-location sequence. In the first experiment, participants 

concurrently experienced either an uncorrelated response-location, an uncorrelated stimulus-

color sequence, or no additional sequence. After the training, the stimulus-location sequence 
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was replaced by a pseudo-random sequence. Participants acquired knowledge about the 

stimulus-location sequence when they received either a parallel stimulus-color sequence or 

no other sequence. In contrast, the stimulus-location sequence was not learned when the 

training material also contained a response-location sequence. This fits the results of 

Gaschler et al. (2012), who found no learning of the color sequence when participants were 

not instructed to code their responses by color; however the response-location sequence 

was always learned, regardless of the instructions. Taken together, these findings point to 

the interpretation that participants by default code their key-presses by location. Once they 

use the location coding for their responses, this code is not free for the coding of the stimulus 

locations anymore.  

In the second experiment of this series, Eberhardt et al. (2017) went one step further. 

In two conditions, the participants received, in addition to the stimulus-location sequence, a 

dual-sequence. This dual sequence consisted of a color-sequence and a fully correlated 

response-location sequence (response keys were mapped to the color). The only difference 

between the two conditions was the instruction prior to the training. In the response-location 

condition, the participants were asked to code the keys in terms of their locations, whereas in 

the color condition, they were told to code the keys in terms of their colors (Gaschler et al., 

2012). As in the first experiment, participants only showed learning of the stimulus-location 

sequence if they had coded their responses in terms of the colors. This further supports our 

assumption that the feature code “location” can only be used for either the response- or the 

stimulus-location sequence, hence that there is no strict difference between motor- and 

perceptual-learning.  

Unidimensional implicit learning seems to be based on abstract feature codes that 

refer to motor- as well as to perceptual features, which have been integrated into abstract 

feature codes over a person’s learning history. Further, the second experiment supports the 

idea that task-sets have an important role, even in unidimensional implicit learning. Two 

sequences can be learned in parallel without the need for any selective attentional 
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mechanism as long as they do not overlap in their feature codes. However, the task-set can 

modulate not only multidimensional but also unidimensional implicit learning; if a sequence 

can be coded by various features, a task-set can determine which of the features of a 

sequence is learned. If two sequences can be coded by the same feature, learning of both 

sequences can be realized by assigning different, non-overlapping feature codes to both 

sequences. This is in line with former results on intentional weighting. Hommel (1993), for 

example, demonstrated that the Simon effect (Simon & Rudell, 1967) can be modulated by 

the intentional coding of the task. The interference between input (the task irrelevant stimulus 

location) and output (a spatial response) could be eliminated if the stimulus-location was 

coded in a way that made it compatible with the location of the response. 

A second series of experiments (Haider et al., 2018) provided evidence for the 

assumption that implicit learning relies upon abstract feature codes that incorporate sensory 

and motor information associated with the respective feature. Here, the goal was to show 

that an implicitly learned sequence of stimulus locations transfers to a new sequence of 

response locations. In this experiment, only an induction phase prior to training varied 

between the two experimental conditions. In the response-induction condition, the induction 

phase required participants to respond to one out of six different stimulus locations on the 

screen with spatially corresponding response keys on the keyboard. Stimulus locations 

appeared in random order, no sequence was present. This should establish an activation of 

the feature dimension “location”. In the color-induction condition, the participants were asked 

to count the appearance of one stimulus color and to enter the amount at the end of the 

block. Thus, these participants should be more likely to activate the feature dimension “color” 

upon perceiving the stimuli. In the subsequent training phase, all participants then were 

asked to judge if the target and the response stimuli were equal or different in color. 

Unbeknownst to all participants, the locations of the targets followed a sequence. In the test 

phase, one out of six different digits appeared at the center of the screen, cueing with which 

of the six response keys the participant should respond. Only the participants who were 

induced to code the target stimuli in terms of the location (in the response-induction 
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condition) responded faster when the response locations in the test-phase matched the 

stimulus-location sequence in the training phase. Participants who were induced to code the 

stimuli in terms of their color (color-induction condition) did not show a transfer effect. Thus, 

this experiment shows that it is possible to express a location sequence in terms of key-

presses when during training this sequence was only observed as a sequence of stimulus 

locations on the screen. This fits the assumption that the term dimension refers to abstract 

feature codes that do not exclusively belong to either the stimuli or the responses.  

Taken together, the empirical findings support our suggestion that abstract feature 

codes are important to implicit learning processes. In addition, implicit sequence learning 

depends on the task-set that determines which dimensions of a sequence are task relevant.  

Intermediate Summary  

Historically, implicit sequence learning was rooted in two rather distinct areas, one being the 

automatization of motor programs and the other being the unintentional and effortless 

acquisition of grammatical rules. It has evolved now to a field that is concerned with the 

ability to assimilate to any sequential, respectively statistical information to which we are 

exposed to in our everyday lives. This pays respect to our ability to anticipate future events, 

even in situations in which the informational structure is highly complex.  

We consider the conceptualization of unidimensional implicit associations being built 

along abstract feature codes to be an important extension of Keele et al.’s (2003) narrower 

conceptualization of dimensions as processing modules. Being strongly influenced by the 

concept of feature codes as proposed by the TEC, this new definition takes a person’s 

learning history as well as the individual perception of an experimental task or real-life 

situation into account. Abstract feature codes are consciously available representations of 

distal events, composed of information from various proximal modules, containing sensory as 

well as motor-related information which correspond to an external event (Hommel et al., 

2001). On the one hand, this view on implicit learning keeps the assumption of it being an 

automatic and unintentional process upright, while, on the other hand, it puts more weight on 
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the conscious and subjective representation of the situation. As long as a person represents 

different features of an event (e.g. an experimental task), implicit learning about these 

features will take place in parallel. The task-set might require the participants to respond to 

the locations of stimuli with corresponding keys. When furthermore, the colors of the stimuli 

follow an uncorrelated sequence, but color is not response-relevant, consciously perceiving 

that there are colors will be enough for activating color as a feature code and implicit learning 

of the color sequence will take place (Goschke & Bolte, 2007; Haider et al., 2014,). In this 

sense, unidimensional implicit learning is automatic and independent from selective 

attention. However, implicit learning becomes more flexible within this view because events 

usually can be described by more than one feature and in such cases it becomes important 

by which features these events are consciously represented.  

So far, building on the model of Keele et al. (2003), we have elaborated why implicit 

learning models will profit from a framework that takes the current conscious representation 

of a task into account. Abstract, hierarchically higher feature codes determine which modules 

are involved in the processing of a task. The different modules that are bound to one feature 

code comprise perceptual and motor information, this allows transfer of implicit knowledge 

from perceptually learned sequences to motor responses and vice versa. 

What we have not touched yet, is the question under which conditions an implicitly 

learned sequence will become an explicitly represented sequence. During training each 

element of the sequence will be held in consciousness for a brief period of time, yet the 

associations between these elements often but not always stay unconscious. What is 

needed is a model of implicit learning that clarifies the conditions under which explicit 

knowledge will develop. The multidimensional system proposed by Keele and colleagues 

(2003) not only describes the necessary conditions for multidimensional implicit learning to 

occur, but further also aims to explain how explicit learning in an implicit learning situation 

can occur. However, the mechanisms behind this transformation from implicit to explicit 

knowledge mostly remain untouched and restricted to the assumption that multidimensional 
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learning involves the ventral processing pathway (Grafton, Hazeltine, & Ivry, 1995; Hazeltine, 

Grafton, & Ivry, 1997), which is assumed to represent categorized information (Goodale & 

Milner, 1992; Goodale, 2011). We further believe that the explanation of explicit sequence 

learning in an implicit learning situation requires additional input from scientific theories of 

consciousness and furthermore is not exclusively related to multidimensional learning.  

 

On the Emergence of Explicit Knowledge in an Implicit Learning Situation 

The second section of this paper is concerned with the question under which 

circumstances and by which mechanisms an implicitly learned (sequence) representation 

can become a conscious representation. Other than the question by which mechanisms 

implicit learning is acquired, the question about the emergence of conscious knowledge has 

far less been researched and there are only a handful of models trying to explain this 

phenomenon. However, this question is of importance for various reasons. There is an 

obvious practical use when knowing how explicit knowledge will develop. Explicit sequence 

knowledge can have various benefits on performance; for example, it enables a person to 

gain flexible strategic control over their knowledge (Haider, Eichler, & Lange, 2011; Tubau, 

López-Moliner, & Hommel, 2007) and to transfer their knowledge to different task contexts 

(Jiménez et al.,2006). It can allow shortcuts, if these are possible (Haider & Frensch, 2005, 

2009; Haider, Frensch & Joram, 2005), and it is usually associated with faster performance 

(Haider et al.,2011; Jiménez et al., 2006; but see Tanaka & Watanabe, 2017, for 

circumstances where performance is hindered by explicit knowledge). Furthermore, knowing 

how to promote the development of explicit knowledge can be helpful in several, for example, 

educational contexts (Pacton, Fayol & Perruchet, 2005; Pacton, Perruchet, Fayol & 

Cleeremans, 2001).  

There are also more fundamental reasons why understanding the mechanisms 

underlying the transition from implicit to explicit knowledge might be important. It requires to 

evaluate general theories of unconscious as well as of conscious processing in order to 
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create a model which is scientifically testable and compatible with the current state of 

empirical findings. In this relation, research on implicit learning can contribute to identifying 

strengths and weaknesses of theories about unconscious and conscious processing. This 

discussion will be picked up in more detail in the following section.  

How to Conceptualize the Transition from Implicit to Explicit Sequence Knowledge  

The explanation of how explicit knowledge arises from an implicit learning situation 

strongly depends on the conceptualization of consciousness. As already implied in the 

former part of this article, we make the presumption that unconscious and conscious 

processes can be separated, and moreover, that they can be investigated within an SRTT or 

similar tasks. It should of course be noted that there is still a debate on whether there is truly 

any evidence in psychological research for unconscious processing (see e.g. Newell & 

Shanks, 2014; Peters & Lau, 2015). These debates should generally not be neglected. From 

a methodological viewpoint, they bring very important and productive criticism leading to 

valuable improvements in the assessment of (un-)conscious knowledge (Rothkirch & 

Hesselmann, 2017). However, we do not debate the unconscious status of implicit 

knowledge in greater depth within this article.  

Assuming that unconscious and conscious states should theoretically and can 

empirically be separated, there are two scientifically promising theories which attracted a lot 

of research and which both are important for conceptualizing the transition from implicit to 

explicit knowledge: These are the Global Workspace Theory (GWT; Baars, 1997; Baars & 

Franklin, 2003; Dehaene & Changeux, 2011; Dehaene & Naccache, 2001) and the Higher 

Order Thought Theory (HOTT; Dienes & Perner, 1999; Lau & Rosenthal, 2011; Rosenthal, 

2012; see Deheane, Lau, & Kouider, 2017, for an argumentation why both, the GWT and 

HOTT are important for consciousness studies). In the following, we will shortly introduce the 

basic concepts of these two theories and will elaborate how they have already been applied 

in the field of implicit learning. Moreover, we will try to illustrate which problems both theories 

have when they are used to explain how explicit knowledge arises from an implicit learning 
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situation. Lastly, we aim to discuss in which direction future research should go, in order to 

tackle these issues.  

Global Workspace Theory  

The GWT is a prominent functional and neuroscientific theory of consciousness. The 

basic assumption of the GWT is that the brain contains a multitude of functionally highly 

specialized subsystems working in parallel. Information in these areas is unconscious, there 

is no phenomenal- (Chalmers, 1995; Block; 2007), micro-consciousness (Lamme, 2006) or 

anything alike associated with information processing in these networks. Per se, these 

subsystems (networks) work encapsulated, that means they exchange information only 

within hard-wired or acquired pathways to fulfill their specialized task. This specialization 

enables the brain to handle a massive amount of input in parallel (Baars, 1997).  

Nevertheless, coherent interaction with the environment requires serial output and therefore 

a mechanism is needed that selects information and puts it into the focus of attention. Here, 

the theory postulates a global workspace (GWS) mechanism which provides the necessary 

infrastructure, neurologically mainly realized by thalamo-cortical long-distance neurons of the 

prefrontal and the anterior cingular cortex (see Baars, Franklin, & Ramsøy, 2013 for a 

detailed elaboration of the neuronal architecture). The GWS is able to select relevant 

information, prevents interference, allows the encapsulated modules to exchange information 

and flexibly establishes temporary networks between these modules (Dehaene & Naccache, 

2001).  

The GWT uses a blackboard metaphor for imagining how the GWS works. When a 

module gets selected to enter the GWS, it can broadcast its content to any other network in 

the brain. Other modules can use this information from the blackboard and process it in their 

specified function. The information of the broadcasted module is no longer encapsulated. It is 

now said to be amodal because it is no longer bound to the specialized processes of the 

module it originated from, but instead is now processed in a broad context of unconscious 

subsystems. These subsystems include, for example, perception, language, intentions, self-
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concepts, expectations, memory, and also exclusive access to working-memory function 

(Baars, 1997, 2005; Baars et al., 2013; Baars & Franklin, 2003; Cowan, 2010; Persuh, 

LaRock, & Berger, 2018; Schwager & Hagendorf, 2009). Neuroimaging shows that this de-

capsulation of information is accompanied by a neurological “ignition”, a sudden, strong 

activation of a vast variety of cortical and subcortical regions (Dehaene & Changeux, 2011; 

Dehaene & Naccache, 2001, Rose, Haider & Büchel, 2010; Wessel, Haider & Rose, 2012).  

Crucial to the GWT as a functionalist theory of consciousness is that conscious 

processing is equalized with the global accessibility of information and the thereby enabled 

options of using this information. There is no specific mechanism or place where 

consciousness is “created”. The GWT suggests a stochastic bottom-up variation-selection 

mechanism for explaining how the most relevant information is selected from the enormous 

amount of unconscious information (“Neural Darwinism”, Changeux & Dehaene, 1989). 

Every unconscious module constantly competes for access to the GWS (variation 

component), while the GWS sets a selection function depending on current goal states. Only 

one module or coalition of modules will show the strongest activation in the context of the 

current goal-state-dependent content of the GWS and will therefore win the competition for 

global broadcasting (Shanahan & Baars, 2005). 

Global Workspace Theory and the emergence of conscious knowledge in 

implicit learning. 

How can the GWT be applied to implicit learning research and the explanation how 

explicit knowledge develops in an implicit learning situation? At first sight, the conception of 

unconscious processing within the GWT seems to fit very well to the common conception of 

implicit sequence learning taking place in encapsulated modules. With our suggestion of 

implicit learning being mediated by feature codes, some more explanation is needed to 

clarify how implicit learning via feature codes still fits to this conception of encapsulated 

unconscious processing (here, implicit sequence learning).  
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With its roots in ideomotor theory (James, 1890; Greenwald, 1970), the TEC is a 

useful framework to explain how consciously available information, such as an intentional 

action plan or task set, can gain control over otherwise consciously unavailable processes. 

Within the TEC, it is assumed that the process of intentional weighting leads to an increased 

activation of the unconscious modules which correspond to the abstract feature code. This is 

compatible to the idea put forward by Dehaene and Naccache (2001) that unconscious 

processing is not restricted to predisposed circuits; instead conscious information within the 

GWS has the capability to establish temporary connectivities between different unconscious 

modules. Within these temporary circuits, information can be exchanged in an unsupervised, 

automatized fashion. Even though its routes have been established by conscious task-sets 

or intentions, the informational exchange itself is unconscious because it does not interact 

with other modules or sends information back to the GWS. Thus, in terms of implicit learning 

via abstract feature codes, the code itself is consciously represented which leads to a higher 

activation of the unconscious modules corresponding to this code. However, the learning 

taking place in the distributed modules itself is unconscious. Hence, our proposed model of 

implicit learning is still compatible with the conception of unconscious processing in the 

GWT.   

Taken together, access to the GWS and thereby the conscious state of information is 

regulated solely by the competition between the representational strength of the unconscious 

modules. As a consequence for the transition from implicit to explicit sequence knowledge, it 

needs to be explained how implicit, encapsulated information can reach a representational 

strength high enough to win the competition for access to the GWS. A simple and suitable 

answer to this might be that with increasing training, the associative strength of implicitly 

learned information increases, making it a question of time and practice trials until implicitly 

learned representations win the competition for access to the GWS and turn into explicit 

representations. This has, with an explicit reference to the GWT, been suggested by 

Cleeremans and Jiménez (2002). They proposed three different factors which influence the 

quality of a representation: (1) Stability, i.e. the time a certain activational pattern can be 
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maintained, (2) strength, i.e. the number of modules involved and their respective activational 

strengths, and (3) distinctiveness, i.e. the extent of overlap between representations within a 

functional network (see Kinsbourne, 1996, for a similar position). While implicit learning first 

leads to very weak representations, with practice these representations gradually gain quality 

and can become explicit. Within their framework the transition from implicit to explicit 

knowledge is a gradual process, involving a gradual increase in control as well as gradual 

change in subjective experience. With reference to Block (1995) the authors furthermore 

remark that there is a differentiation between access- and phenomenal consciousness within 

their framework.  

The gradual change in control and experience assumed by Cleeremans and Jiménez 

(2002), however, does not fit the GWT. According to the GWT, consciousness with all its 

subjective and behavioral components is an all-or-none phenomenon (Dehaene & 

Changeux, 2011; Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006; Del Cul, Baillet, 

& Dehaene, 2007; Kouider et al., 2010). This is supported by research in implicit learning 

which aims to examine the point in time a person becomes able to verbalize their acquired 

knowledge or use it in a strategic way. So far, it rather seems as if there is a certain moment 

or rather a short time window of “insight”, where a person switches from an unconscious to a 

conscious knowledge state. Haider et al. (2011) provided evidence that only participants who 

showed a sudden drop in their RT during learning were able to verbalize their knowledge by 

the end of training. The RT-drop seemingly reflects the moment where participants switched 

from stimulus- to plan-driven control (Tubau et al., 2007). Moreover, neuroimaging data like 

the sudden coupling of gamma-band activity, respectively increases of the BOLD-signal in 

the ventrolateral prefrontal cortex, the medial and ventrolateral prefrontal cortex and the 

ventral striatum have been shown to precede such an RT-drop (Rose et al., 2010; Wessel et 

al., 2012). These changes might reflect the sudden “ignition” of cortical activity which, as 

postulated by the GWT, accompanies the transition from an unconscious to a conscious 

state (Dehaene & Changeux, 2011; Dehaene & Naccache, 2001). 
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It might of course nevertheless be possible that the increasing quality of a 

representation plays a very important role in developing conscious knowledge of implicitly 

learned representations. It could be assumed that with increasing quality of a representation, 

its activation becomes stronger and therefore the likelihood gradually increases for this 

representation to win the competition for access to the global workspace. Once this threshold 

is passed, the representation becomes conscious in an all-or-none manner.  

There are two further problems with the solution that the transition from implicit to 

explicit knowledge depends solely on the gradually increasing representational quality. The 

first has also been acknowledged by Cleeremans and Jiménez (2002) themselves: 

Representational quality might be a necessary, but not a sufficient condition for explicit, 

conscious knowledge to occur. First, it seems hard to imagine that implicitly acquired 

information can reach a higher representational strength than any of the other competing 

modules by a pure bottom-up process. As mentioned before, the GWT postulates a variation-

selection mechanism. That means that in most cases the module that gets selected for 

processing within the GWS has the higher activation in the context of the current selection-

function represented in the GWS. This way, current goal states have the option to provide 

top-down enhancement of the activation of potentially relevant modules. Selection based on 

pure bottom-up activation can happen in case of an alarming stimulus in the environment, 

e.g. a loud noise, but seems highly unlikely for a relatively weak implicit learning signal (see 

e.g., change blindness; Simons, Franconeri & Reimer, 2000). Cleeremans and Jiménez 

(2002) stated that attention and integration of information play an important role in 

determining whether any sufficiently strong representation will eventually enter a state of 

conscious processing. This supposed involvement of top-down mechanisms has not been 

elaborated any further. It therefore remains questionable how a top-down enhancement of 

implicit information could occur without a concurrent goal state that sets a fitting selection 

function for the modules processing implicitly learned information. Hence, if one aims to 

describe a mechanism for the emergence of explicit knowledge in an implicit learning 

situation based on the assumptions of the GWT, it needs to be explained how the system 
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gets into a state in which the encapsulated module containing implicit information provides 

the fitting information.  

Lastly, the second problem here might be even more profound. Even if it was 

explained how a goal state for which the implicit modularized representation provides the 

most useful information, it is yet unclear whether implicitly acquired information can simply 

leave its encapsulated state so that other modules, which then potentially gain access to its 

content, can interpret this information in their own specialized way. Usually, when we learn 

something explicitly, different modules are activated concurrently. If, for example, we learn 

about a new object, we have visual input, concurrently active with verbal and semantic 

information. When, instead, we learn something implicitly, like a sequence of movements or 

shapes, there never has been a connection between the sequential, module-specific input 

and any other information processing system. It seems unclear whether other modules can 

interpret this information simply by gaining access to it, so that, for example, a person 

becomes able to verbalize that they have learned a certain sequence.  

An alternative to this could be that implicitly learned sequence knowledge stays in its 

encapsulated form and never gains access to the GWS itself. Instead, it is conceivable that 

explicit sequence knowledge needs to be acquired by developing a whole new 

representation via explicit reasoning functions. In this case, it would not have to be explained 

how an implicit representation in an encapsulated module can reach an activation high 

enough to win the competition against other modules or how top-down attention might be 

directed towards that module. Neither would it have to be explained how and whether other 

modules can interpret the formerly encapsulated module without ever formerly being co-

activated with it. What instead would have to be explained is how the GWS gets into a goal 

state that mobilizes the relevant subsystems to learn the sequence explicitly. This will be 

discussed in more detail in a later section. However, beforehand we discuss the HOTTs as 

another important consciousness theory with the potential to explain the transition from an 

implicit into an explicit knowledge state.  
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Higher-Order Thought Theory  

The Higher-Order Thought Theory (HOTT) in its most popular form goes back to the 

work of Rosenthal (1997; Dienes & Perner, 1999). The HOTT is concerned with the 

metacognitive aspects of consciousness. In its core, it differentiates between first-order and 

second-order (or higher-order) states. First-order states refer to simple input-output rules of 

any sensory or motor system. This can be understood in analogy to the parallel working 

modules in the GWT. Encapsulated, respectively implicitly learned information can be seen 

as a first-order state which per se is unconscious. Not only the human brain, but any simple 

or complex machine which shows discriminatory performance has first order states (e.g. 

perceiving light of a certain wavelength results in the output of detecting red). 

Consciousness, according to the HOTT, crucially depends on developing higher-order 

knowledge about this first-order knowledge. Put simply, consciousness means knowing that 

one knows. This comprises the ability for self-reflection, self-reference and a propositional 

attitude (e.g. “I know/believe/guess that it is red that I see”, “It is I, who sees red”, “it is red 

that I see”, Dienes & Perner, 1999). What is needed for consciousness is a mechanism that 

allows the brain to draw inferences about its own internal first-order states and about how 

these relate to states in the environment. Different theoretical suggestions and models have 

been put forward to describe the learning process behind the acquisition of higher-order 

knowledge about first-order states (Fleming & Daw, 2017; Lau, 2008; Lau & Rosenthal, 

2011).  

Higher-Order Thought Theory and the emergence of conscious knowledge. 

In his recent work, Cleeremans (2008, 2011, 2014) has applied HOTTs to the 

question how explicit knowledge develops in an implicit learning situation: Through 

interaction with the environment, a first-order representation is developed, gradually 

improving in quality, as originally assumed by Cleeremans and Jiménez (2002). The crucial 

addition to their former stance and the new implementation of HOTTs is that the acquired 

first-order information is never conscious; it is labeled as knowledge within the system. For 

consciousness to arise, the first-order information needs to be redescribed as a 
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metarepresentation; that is, knowledge for the system (Clark & Karmiloff-Smith, 1993). The 

first-order representation itself becomes an object of a representation for higher-order 

systems. This higher-order system receives input from the first-order systems and learns that 

the state the first-order system has changed and thereby develops a higher-order attitude 

towards the first-order knowledge (e.g. “knowing that …”, “hoping that …”, “seeing that …”). 

This higher-order representation is assumed to be a new representation involving a broad 

pattern of activation over different processing units which is only indirectly shaped by the 

changes of the connection-weights within the first-order system. The proposed learning 

mechanism behind the first- and the higher order learning system is the same; both systems 

gradually improve the quality of a representation with each learning trial. Pasquali, 

Timmermans, and Cleeremans (2010) have investigated the relation between first-order 

sensitivity and higher-order awareness measured by the Post-Decision Wagering Task 

(PDWT; Persaud, McLeod, & Cowey, 2007) within different paradigms (i.e. Blindsight, Iowa 

Gabling Task, and an AGL Task). These results supported the assumption that the higher-

order representations gradually improve with the learning progress of the first-order system.  

Surely, there are debates how exactly the relation between first-order knowledge and 

a meta-cognitive learning mechanism should be modeled with most of the suggested models 

being based on bottom-up signal-detection theories (Barrett, Dienes & Seth, 2013; Fleming & 

Lau, 2014; Maniscalco & Lau, 2012, 2016). What they all have in common is the gradual 

development of higher-order, respectively conscious knowledge. The conscious state of a 

representation changes from guessing, which is equalized with being unconscious about a 

first-order representation, to knowing, which is equalized with being conscious about a first-

order representation (Dienes & Scott, 2005; Sandberg, Timmermans, Overgaard, & 

Cleeremans, 2010).  

Applied to the question how explicit sequence knowledge develops in an implicit 

learning task, this leads to one question: With gradually increasing metacognitive knowledge, 

when is a person able to state that they have detected that there is a sequence hidden in the 

task and consequently is able to report that sequence? Imagine a person not only gradually 
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giving more correct responses in an SRTT (via first-order learning) but also noticing that their 

perception of the task gradually changes to knowing the next response in advance (via 

higher-order learning). Does the moment this person notices that they know the answers 

equal the moment the person knows that there is a sequence and what this sequence is? 

This question is related to the aforementioned problem based on the GWT, whether there 

can be an immediate access to the contents of the first order representation or whether a 

new representation needs to develop via explicit, conscious reasoning processes.  

A rather simple higher order learning mechanism as proposed by Cleeremans (2014) 

might indeed provide an important basis for a cognitive system to determine what first order 

state it is currently in. We agree with the assumption that meta-cognitive learning plays a 

significant role in gaining conscious insight into otherwise unconscious information 

processing. Yet, we think there are a few problematic aspects about this simple explanation 

that need to be considered. First, the mechanism described by Cleeremans and colleagues 

(Pasquali et al., 2010) is tested in situations where a person is directly asked to evaluate the 

correctness of their responses. It is questionable whether such an evaluative process of 

one’s own behavior happens automatically and in parallel when there is no external 

instruction to do so (as there is in a subsequent PDWT). While, as shown in the first part of 

this article, the research implies that implicit learning processes can happen in parallel 

(Goschke & Bolte, 2012; Haider et al., 2012, 2014, 2018), it is not granted that higher-order 

learning processes can happen in parallel for all implicit learning processes. It might be that 

higher-order learning processes rely on an intention, respectively selective attention to 

evaluate one specific behavioral output. In this case, it needed to be explained how the 

system decides which first-order representations are used to develop higher-order 

representation. 

Assuming that higher-order learning processes happen automatically and in parallel 

to the acquisition of first-order knowledge, as it seems to be implied by HOTTs, leads to 

another problem: The higher-order learning process informs the system that knowledge has 

been acquired, but knowing that one knows (instead of guessing) the correct response 
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seems close but not equal to knowing that there is an underlying sequence. Rather, on a 

subjective level, knowing that one knows the correct answer will most likely be a surprise, 

resulting in wondering why one knows the correct answer. Even coming to the conclusion 

that the reason is an underlying sequence, this further does not directly imply that the person 

knows the exact regularity without further inferential processes (Scott & Dienes, 2010).  

A third question that arises in the light of such a simple higher-order learning 

mechanism is whether learning to know that one’s own responses are increasingly often 

correct is the only option to develop explicit from implicit sequence knowledge. There are a 

few studies showing that explicit knowledge seems to develop whenever an unexpected 

change in one’s own behavior occurs (Esser & Haider, 2017; Haider & Frensch, 2005, 2009; 

Haider et al., 2011; Rünger, 2012; Rünger & Frensch, 2008; Schwager, Rünger, Gaschler & 

Frensch, 2012). This includes, for example, noticing premature responses before the next 

stimulus occurs (Haider & Frensch, 2009), sudden changes in the sequential structure which 

lead to slower reaction times and an increased amount of errors (Rünger & Frensch, 2008), 

or changes in the perceived fluency of the task performance (Esser & Haider, 2017).  

On the theoretical side, the problem here is to explain how such findings can be 

explained by a higher-order learning process that works with a simple bottom-up, gradual 

strengthening mechanism. A multitude of parallel higher-order learning processes would be 

needed to be active at the same time to evaluate all the different aspects of the task (i.e. 

error rates, reaction times, fluency, etc.) for just one single sequence. Moreover, such results 

imply sensitivity for sudden changes. This implies that a learning process involving 

expectations, predictions and violations thereof, rather than simple associative strengthening 

need to be considered. On an empirical side, this is further supported by the above 

mentioned studies, which used different manipulations for balancing the associative strength 

between conditions but manipulated whether small or large violations of expectations 

occurred. For example, Esser and Haider (2017) showed differences in the emergence of 

explicit knowledge when the structure of the task led to noticeable differences in the fluency 

of the task material, while the amount of regular and irregular sequential trials was equal to a 
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condition that could not experience such differences in the experienced fluency. A simple 

bottom-up higher-order learning mechanism does not include the size of prediction error 

(here, the sudden changes in fluency) as a signal. In the following section, we will propose a 

model which includes ideas of the HOTTs and the GWT in order to respond to the formerly 

described problems.  

The Unexpected Event Theory 

The Unexpected Event Theory (UEH) was originally proposed by Frensch et al. 

(2003). It is based on an idea by Dienes und Perner (1999) who stated that the observation 

of one’s own behavior is a central aspect for the emergence of explicit knowledge from an 

implicit learning situation. The UEH aimed to improve the explanation how and when implicit 

learning can trigger an inferential process.  

In its original form, the UEH shared the assumptions of Cleeremans and Jiménez 

(2002) as well as of Keele et al. (2003) on implicit learning. In the UEH it is assumed that 

implicit learning is a byproduct of interacting with the environment. By repeatedly interacting 

with sequential information, associative weights will gain strength and implicit representations 

will develop. It is further assumed that due to its encapsulated nature and the circumstance 

that there is no intrinsic conscious property of implicit knowledge, there has to be an 

additional mechanism that can transform it into explicit knowledge.  

In the context of the first part of this article, this view has not changed in its core. 

What has been added is that the term “encapsulation” now refers to less hard-wired 

processing units, but allows these units to interact within the boundaries of the abstract 

feature codes that correspond to perceivable events in the environment. However, as 

outlined in the first section, the knowledge within the involved modules construing one 

abstract feature code remains encapsulated and the question remains which mechanism 

grants access to this knowledge.  

The crucial idea of the UEH is that explicit sequence knowledge can only develop 

when a person unexpectedly notices a change in their own behavior. This can trigger an 
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intentional search for the sequence. In an implicit learning situation, interaction with the task 

leads to continuous improvement of the responses to the stimuli; they become more accurate 

and faster. It can be this improvement or, for example, the feeling that the task becomes 

more fluent or easy, that there is a certain rhythm in one’s own responses, or even an 

external event that directs the participant’s attention towards noticing an underlying pattern 

and triggers following search processes. These search processes do not necessarily lead to 

a detection of the sequence if another explanation seems more likely to account for the 

unexpected event (Haider & Frensch, 2005). Generally speaking, the UEH comprises a 

monitoring process which constantly compares expected and actual experiences. This 

comprises internal, experiential, as well as external, behavioral deviations from one’s 

expectation. This process allows detecting unexpected changes and initiates an attributional 

process for the detected conflict in order to adjust its predictions and reestablish coherence 

between the distant environment and one’s proximal model of it. Comparable monitoring-

models have been established in neurocognitive models of conflict-detection and adaption 

(Botvinick, 2007; Botvinick, Braver, Barch, Carter, & Cohen, 2001), metacognitive control 

(Koriat, 2000, 2012, 2015), or memory (Whittlesea, 2002; Whittlesea & Williams, 2000). 

It is an aim of this article to elaborate the processes behind the original proposal of 

the UEH a little further and to point to open questions which should be addressed by future 

research. We believe that first further elaboration is needed concerning the mechanism that 

allows the detection of unexpected events. In this relation HOTTs and research on 

metacognitive, higher-order learning processes are very important. What is needed is a 

mechanism which allows a comparison between the expected metacognition we have of a 

given situation and the experienced metacognition.  

Right now, there are several different models aiming to explain the relation between 

the first-order signal (here, the implicit knowledge) and the metacognitive evaluation of these 

signals. Usually these rely on simple signal-detection models (Cleeremans, Timmermans, & 

Pasquali, 2007; Galvin, Podd, Drga, & Whitmore 2003; Lau & Rosenthal, 2011; Del Cul, 

Dehaene, Reyes, Bravo, & Slachevsky, 2009). The problem with these models is that they 
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are often pure bottom-up models that do not take several important top-down factors into 

account which have often been shown to influence metacognitive decisions. This includes for 

example the use of heuristic cues (e.g. fluency, luminance) which have no direct relation to 

the first-order knowledge the metacognitive judgement is relating to (Hoyndorf & Haider, 

2009; Koriat, 2007; Wilbert & Haider, 2012). It further includes the role of previous 

experiences, for example, with similar situations, successes and failures, or general 

knowledge about one’s own performance capacities.  

There are, however, a few promising suggestions modelling the relationship between 

first-order knowledge and metacognitive judgements with Bayesian learning (Fleming & Daw, 

2017; Sherman, Seth, Barrett, & Kanai, 2015). One advantage here is that Bayesian models 

allow metacognitive learning via predictive coding (Clark, 2013; Friston, 2010). The 

evaluation of one’s own behavior respectively knowledge leads to a first hypothesis of what 

metacognitive experience is expected in the next, similar situation. This prediction is used to 

be compared with the current experienced metacognitive judgement and, in turn, the 

resulting error-signal is used as a bottom-up learning signal for the next, more precise 

prediction.  

For implicit learning and the development of explicit knowledge, this means that any 

person has a certain expectation about their own performance in an SRTT, based on 

previous experiences with similar situations. The sequential material hidden in the task 

usually leads to behavior different from the expected one. These deviations from expectation 

will be used to adjust the metacognitive model (Esser & Haider, 2017). We assume that what 

is important for the development of explicit knowledge is the size of the prediction error and 

the strength of the a-priori hypothesis. When a person is participates in an SRTT training, 

they will have certain prior expectations on how their performance in this task should be like 

(e.g. determined by prior similar participation in experimental studies or by general 

knowledge how well their eye-hand coordination is in computer guided tasks). Many 

deviations from the expected metacognitive judgement of the situation can easily be used to 

adjust the model via this bottom-up error signal. For example, faster responses, fewer errors, 
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increasing fluency are compatible with mere practice effects and only slight, gradual 

adjustments of the metacognitive models are the result. However, large prediction errors 

would lead to a stronger change of the metacognitive model. It might be functional to 

evaluate the situation and wonder whether a new, different model should be applied to the 

situation, instead of making rather drastic changes to the current model. So far, there is not 

much research on how metacognitive models are selected in a given situation and under 

which circumstances a model is replaced with a new or different one or when instead the 

current model will be adjusted. Collins and Frank (2013) suggested a Bayesian “context-task 

set” model. In this model, an inference is made in every single learning trial about whether 

the current task-set is still applicable to the current situation or whether there are yet 

unknown rules that should influence the task-set and therefore, a new model should be 

applied. This model also uses arbitrary context cues to determine whether the current 

situation is indicating a new, unknown task context or whether previously acquired 

metacognitive models should be used and adjusted.  

We believe that this is the point, where the GWT has an important role. A large 

prediction error about the current metacognitive evaluation of the situation is a signal with a 

high likelihood of entering the GWS. The person becomes conscious about not experiencing 

what they expected to experience. This conscious state allows the involvement of other 

cognitive subsystems in order to evaluate whether a different model should be applied to the 

situation. Via hypothesis testing it can be detected that there is a sequence in the task. It is 

however also possible that other, seemingly more likely, explanations suffice to explain the 

unexpected experience and the search is terminated before the sequence is found (Haider & 

Frensch, 2005). What is important here is that we assume that this search process, if 

successful in finding the sequence, leads to a new, explicit representation of the sequence. It 

is not the acquired implicit knowledge itself which becomes conscious. This knowledge 

remains encapsulated. 

These assumptions solve some of the formerly described problems behind 

explanations based solely on the GWT or HOTTs. Concerning the GWT, the UEH does not 
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need to explain how an implicit representation can gain a signal-strength strong enough to 

win the competition against all other unconscious modules or how top-town attention can be 

directed to this encapsulated knowledge. This problem is solved because it is a conflict 

situation stemming from a strong conflict between the expected and the experienced 

metacognitive judgements which has a high likelihood of winning the competition against 

other parallel processes. Neither does it need to be explained whether and how different 

subsystems can interpret the information from formerly encapsulated modules without ever 

being synchronized with this information before. Instead, we assume that a new explicit, 

multi-modal representation of the sequence is created through active search processes.  

Concerning the HOTT-based explanation of the emergence of explicit from implicit 

knowledge, we believe that the improvement the UEH offers lies in the assumption how 

implicit, first-order knowledge and explicit higher-order knowledge are related. An account 

where metacognitive judgements depend on a predictive learning process which does not 

only base its predictions on the first-order bottom-up signal, but also on heuristic cues, 

previous knowledge and experiences with similar situations, can help to explain different 

empirical findings. This includes, for example, premature responses (Haider & Frensch, 

2009), changes in the underlying sequence (Schwager et al., 2012) and changes of 

experienced fluency (Esser & Haider, 2017). All these results are difficult to explain with a 

pure bottom-up mechanism relying on gradual strengthening. Furthermore, large prediction 

errors and the processes they are assumed to trigger fit the data suggesting that explicit 

knowledge seems to develop in a sudden moment of insight (Haider et al., 2011; Rose et al., 

2010; Schwager et al. 2012; Wessel et al.,2012), rather than developing gradually. Assuming 

a gradual development of explicit knowledge requires further elaboration on how this gradual 

development matches subjective experience and how the transition from knowing that one 

knows to knowing the exact sequence occurs.  

 

Conclusion and Future Directions 
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In the two main sections of the article, we aimed to provide a framework of implicit 

(sequence) learning. According to this framework, the current consciously available task set 

determines by which feature codes the interaction with the environment is represented and 

consequently which sequential features of a task are learned. Conversely, the implicitly 

learned knowledge can influence the current conscious representation of a task and thereby 

can lead to the development of explicit knowledge. We assume that the metacognitive model 

a person has about their own behavior in a given situation (e.g. how fast, how precise, how 

difficult or fluent a task should be) adapts to the task by comparing the predicted and the 

experienced metacognitive judgement in any given situation. The behavioral changes 

resulting from implicit learning may not fit the current metacognitive model (i.e. responses 

might suddenly be much slower than expected when the sequence is exchanged with new, 

random material). If so, this violation serves as a trigger to evaluate whether a new 

metacognitive model of the situation should be applied.  

In further detail, in the first part of this article, we argued that the task set defines the 

features by which the actions and stimuli in the environment are coded. That means, we do 

not share the assumption of Keele et al. (2003) that implicit learning in the unidimensional 

system is fully independent of attention and that implicit knowledge is built within single 

dimensions that can be defined as processing modules (Keele et al., 2003; e.g. a module for 

shape processing, a module for response location processing). Instead and based on recent 

findings of Gaschler et al., (2012), Eberhardt et al. (2017), and Haider et al. (2018), we 

proposed to consider implicit learning to be based on modules that are temporarily bound 

together to an abstract feature code. Feature codes are integrated, multimodal structures 

comprising all the sensory and motor codes that have been associated with a certain 

perceivable event in the distal environment during a person’s learning history (Hommel et al., 

2001).  

This perspective on implicit learning has two important implications: First, it loosens 

the strict distinction between stimulus- and response-related implicit learning. This especially 

helps to better understand, for instance, implicit location learning, which has been subject to 
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a controversial debate of the perceptual- or motor-dependent processes behind it (Marcus et 

al., 2006; Willingham, Wells, Farrell, & Stemwedel, 2000). The second important implication 

here is that this view makes implicit learning more dependent on a person’s task set. Implicit 

learning is still automatic and capacity independent in the way that it can still take place in 

parallel and in the presence of concurrent other tasks. Nevertheless, selective attention plays 

an important role in our conception, as implicit learning is assumed to be restricted by the 

abstract feature codes a person represents in their current task set. The suggestion of 

implicit learning being influenced by conscious representations of the task set fits well with 

more recent research from other areas of unconscious processing. For example, it has been 

shown that the behavioral effect of unconsciously presented primes can be influenced by a 

person’s task set (Kiefer, 2012; Kiefer et al., 2012; Kouider & Dupoux, 2004; Kunde, Kiesel & 

Hoffmann, 2003).  

Even though there are first empirical findings supporting this view, more research 

should be encouraged by this article. What is needed, are more experiments investigating 

the applicability of this concept to other dimensions of implicit learning. For example, whether 

listening to an auditive sequence can lead to the acquisition of a response-location or color 

sequence depending on the currently instructed task-set. Moreover, it should be tested 

whether not only the acquisition but also the expression of implicitly acquired knowledge can 

be influenced by a given task set. Can a task set control which implicitly acquired knowledge 

is recruited and which is not by activating or inhibiting certain feature codes? A third 

interesting aspect could be whether a task set can hinder the automatic acquisition of a 

sequence, when the task set directs attention to sequence irrelevant aspects of the task.  

The second section of our article dealt with the emergence of explicit knowledge in an 

implicit learning situation. In this part, we deviate from the model of Keele et al. (2003). In 

their model, explicit learning is restricted to multidimensional learning; an assumption which 

has, to the best of our knowledge, never been directly tested and does not seem to fit 

empirical findings showing the option of explicit learning of any unidimensional sequence. 

Rather, our suggestions are in closer relation to models directly concerned with the 
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emergence of explicit sequence knowledge. These models basically all rely on associative 

strengthening, either with relation to the GWT (Cleeremans & Jiménez, 2002) or to HOTTs 

(Cleeremans, 2014). It is a big advantage of these models that they are very parsimonious 

assumptions with reference to the two most important current frameworks on the emergence 

of conscious processing. Nevertheless, both accounts have some weaknesses. On the one 

hand, they include some theoretical assumptions in need of further elaboration. On the other 

hand, they do not fit the results from some studies on the emergence of explicit knowledge 

without further assumptions. Both aspects require further explanations with which these 

accounts might end up less simple. Also, both views have yet to be tested empirically in 

experiments, as so far, they only rely on simulation data (Cleeremans, 2014).  

The UEH is not a new account of the emergence of explicit sequence knowledge and 

it has already brought up converging empirical evidence. Here, we elaborated the UEH a 

little further, bringing together important aspects from the HOTTs and the GWT. We assume 

that metacognitive learning processes are an important part in the emergence of explicit 

sequence knowledge. However, we do not think that simple associative, bottom-up learning 

processes will be sufficient to explain the empirical findings pointing to a role of unexpected 

events in the emergence of explicit knowledge (Esser & Haider, 2017; Gaschler, Marewski, 

Wenke & Frensch, 2014; Haider & Frensch, 2009; Rünger & Frensch, 2008; Schwager et al., 

2012).  

We propose that a predictive Bayesian account of metacognitive learning might be 

more promising. Within such a framework, it can be modelled that not only the current 

bottom-up first-order signal but also top-down factors, such as heuristic cues and previous 

experiences with similar situations, are the basis for a prediction of the metacognitive 

judgement of a given situation. This prediction is then compared to the experienced 

metacognitive judgement and its error signal is used as a learning signal for developing a 

more accurate metacognitive model. Small prediction errors might lead to a gradual change 

of the model. Yet, large prediction errors (in combination with strong a-priori hypotheses) can 

serve as a signal that the current model is not suitable for the given situation and a different 
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model should be applied. This view corresponds to other current models of metacognitive 

judgements outside of the field of implicit sequence learning research, which also point to the 

shortcomings of prominent pure bottom-up models of metacognition (Collins & Frank, 2013; 

Fleming & Dew, 2017; Scott, Dienes, Barrett, Bor, & Seth, 2014).  

Our proposal of explicitly integrating the role of metacognition in the UEH needs 

further experimental investigation: First, it should be tested whether the predicted 

metacognitive judgements can be manipulated not only by the strength of the first-order 

signal but also by differences between the expected and the actual experienced 

metacognitive judgment. Second, the size of the prediction error of metacognitive 

judgements as well as the strength of the a-priori hypothesis should be manipulated to test 

its relation to the emergence of explicit knowledge. Third, we proposed that large prediction 

errors serve as a conscious signal to trigger explicit search processes. These search 

processes are assumed to lead to a new explicit representation, independent of the implicit 

representation. Also this latter assumption needs to be tested empirically. In a study by 

Schwager et al. (2012), it has been investigated whether a change of the underlying 

sequence serves as an unexpected event, leading to conscious knowledge of the new, 

unpracticed sequence. Even though their results were not clear cut, their results provide an 

interesting experimental starting point, to test whether new representations are created in an 

explicit search process. This line of research should be pursued further.  

Last but not least, we believe that the development of a comprehensive model of 

implicit learning and explicit sequence learning, is important for several reasons. Within the 

field of implicit learning research, there are so far only very few theoretical perspectives on 

the emergence of explicit knowledge. They all draw on metacognitive learning, respectively 

higher-order thought theories (Cleeremans, 2008, 2011; Dienes & Perner, 1999; Perruchet & 

Vinter, 2002; Scott & Dienes, 2010). We agree with the assumption that metacognitive 

learning processes are important to explain how explicit representations can develop in an 

implicit learning situation. However, we think that further development of these models will 

profit from current advances in research on how the relation between first- and higher-order 
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knowledge can be modeled. Bayesian approaches seem promising insofar as they allow 

including the role of prior expectations about a task as well as the prediction errors that arise 

from the violation of these expectations.  

A better understanding of the transition from implicit to explicit sequence knowledge 

can provide interesting contributions to the broad and difficult field of consciousness theories 

itself. Implicit learning paradigms create the unique experimental situation where 

unconscious knowledge does not need to be induced by week signal strength. By definition, 

implicitly acquired knowledge is knowledge that has never been conscious before and 

therefore has never been embedded into a broader context of different subsystems, which 

might change the way the information is processed unconsciously. Therefore, implicit 

sequence learning paradigms are well suited to investigate how the brain develops 

knowledge about its own internal states.  

The development of metacognitive knowledge is a concern of many different and 

often separated research fields which all provide different contributions. For example, 

research on decision-making or on perception is governed by bottom-up signal-detection 

models (Galvin et al., 2003; Pleskac & Busemeyer, 2010), cue-utilization is prominent in 

memory research (Koriat, 2000, 2012, 2015) and models of evidence accumulation are often 

found in research on error-monitoring (Yeung & Summerfield, 2012). Implicit sequence 

learning paradigms can augment this research by providing additional opportunities (to the 

predominant priming paradigms) to manipulate the first-order signal strength, external cues, 

as well as the role of prior expectations and how these expectations develop over the course 

of learning.  
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